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Abstract 

Accurate and accessible phylogenetic analysis is essential for understanding microbial tax onom y and e v olution, which are integral to microbiology, 
ecology, and drug disco v ery, y et it remains a challenging task. AutoMLST2 ( https://automlst2.ziemertlab.com ) is a web server designed to 
facilitate automated phylogenetic reconstruction and microbial taxonomy analysis for bacterial and archaeal genomes. It builds on the foundation 
of AutoMLST, which remains widely used due to its user-friendly interface compared to similar tools. Given its continued popularity and utility, 
w e ha v e enhanced AutoMLS T to le v erage ne w er reference dat abases and comput ational tools. AutoMLST2 integrates the Genome Tax onom y 
Database, extends support to archaeal genomes, and improves analytical flexibility. Key improvements include more customizable processing 
modes, containerization to pre v ent queue accumulations, and parallel computing f or large-scale studies. By incorporating up-to-date databases 
and w orkflo ws, AutoMLS T2 continues to pro vide an accessible and efficient platf orm f or researchers in microbiology, e v olutionary ecology, and 
natural product disco v ery. 
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nderstanding microbial phylogeny and taxonomy is funda-
ental to various biological disciplines, including microbiol-
gy , ecology , and drug discovery [ 1 , 2 ]. Accurate species iden-
ification guides comparative genomic analyses and investiga-
ions of gene function and metabolic pathways [ 3 , 4 ]. Tra-
itional methods, such as 16S rRNA gene-based classifica-
ion, often struggle to resolve closely related species due to
heir limited phylogenetic resolution [ 2 ]. Advances in whole-
enome sequencing and computational methods have enabled
ore robust approaches, such as Average Nucleotide Identity

ANI) analysis and Multi-Locus Sequence Analysis (MLSA)
 5–7 ]. However, implementing these workflows typically re-
uires technical expertise and significant computational re-
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sources, making them less accessible to researchers without
bioinformatics training [ 6 , 7 ]. 

To bridge this gap, AutoMLST was developed as a user-
friendly web server for automated phylogenetic analysis based
on MLSA [ 8 ]. Since its release, AutoMLST has enabled
rapid, high-resolution phylogenetic tree generation for bacte-
rial species and has remained widely used due to its ease of use.
However, as the field has evolved, so have the expectations for
phylogenetic tools [ 1 , 7 ]. 

Since the release of AutoMLST, GTDB-Tk has emerged as
a highly accurate tool for microbial classification, leverag-
ing the standardized Genome Taxonomy Database (GTDB)
[ 1 , 7 ]. However, GTDB-Tk requires substantial computa-
tional infrastructure and technical expertise, limiting its
025. Accepted: May 1, 2025 
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Figure 1. The overall workflow of AutoMLST2, automating microbial phylogenetic analysis through De novo and Placement mode workflows. Users 
upload genomes, which are compared to GTDB reference genomes using ANI estimation [ 1 , 5 ]. R ele v ant genes are dynamically selected, aligned, and 
trimmed before phylogenetic tree construction with IQ-TREE [ 16 ] for concatenated analysis or ASTRAL-Pro3 for coalescent analysis [ 17 ]. The final De 
no v o or Placement trees provide high-resolution evolutionary insights. 
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accessibility for non-expert users [ 6 ]. Despite its older
database, AutoMLST remains widely used due to its user-
friendly interface [ 8 ]. To address these challenges, we intro-
duce AutoMLST2, a major update that integrates GTDB ref-
erence genomes, combining the accuracy of GTDB-Tk with
the ease of use of AutoMLST. Key improvements include sup-
port for archaeal genomes, enhanced analytical flexibility, and
a more scalable computational framework. By incorporat-
ing newer databases and advanced analytical capabilities, Au-
toMLST2 provides an accessible and efficient platform for mi-
crobial genome studies while maintaining the usability that
made AutoMLST popular. Here, we outline its enhancements
and demonstrate its utility in phylogenetic analysis. 

Materials and methods 

Overall workflow 

AutoMLST2 provides an automated workflow for microbial
phylogenetic analysis, taking the genome(s) uploaded by the
user as input (Fig. 1 ). Once the user selects the desired op-
tions and submits the job, AutoMLST2 compares the up-
loaded genomes with a reference database to identify the most
similar reference genomes [ 1 , 7 ]. These reference genomes are
then used to construct a phylogenetic species tree, providing
an evolutionary context for the query genomes [ 5 , 9 ]. The 
platform offers two distinct analysis modes: De novo and 

Placement modes. In De novo mode [ 10 , 11 ], phylogenetic 
trees are constructed entirely from scratch, while Placement 
mode integrates query genomes into a precomputed reference 
tree, which is pruned to retain only the most closely related 

genomes [ 1 ]. 

Input and reference selection 

Users can upload up to 50 query genomes in GenBank or 
FASTA format. To identify appropriate reference genomes,
AutoMLST2 utilizes the GTDB representative genome set 
(release R220, 2024), which contains ∼107 000 bacterial 
genomes [ 7 ]. ANI estimates are rapidly calculated using pre- 
computed MASH sketches [ 12 ], enabling the selection of the 
50 most similar reference genomes for downstream analysis. 

Gene selection and alignment 
Gene homologs are detected using > 2800 filtered HMMs 
(Hidden Markov Models) from the PGAP (NCBI Prokary- 
otic Genome Annotation Pipeline) [ 13 ] database, focusing on 

housekeeping genes for higher resolution [ 14 ]. HMM searches 
are performed on protein sequences, while all alignments 
for phylogenetic inference are done on the corresponding 
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Figure 2. AutoMLST2 web interface, displaying a phylogenetic tree with annotated ANI groups, strain information, and genome properties. Users can 
visualize relationships, interact with tree elements, and download results. 
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Table 1. Taxonomic precision of genome placement across different 
datasets and tree-building methods 

Dataset / scenario Taxonomic precision 

Multiple sets of reference 
genomes 

100% of genome taxonomic 
assignments match GTDB 

10 random isolate genomes 
from Actinobacteriota 

100% of genome genus 
assignments match GTDB 

10 random 

Gammaproteobacteria 
genomes, a mix of MAGs and 
isolates 

2 low-quality MAGs are not 
present in the final tree. Other 
genomes match GTDB. 

Nocardia farcinica NCTC 

11134 Placement tree 
Correct Placement into the 
GTDB tree 

Nocardia farcinica NCTC 

11134 Coalescent tree 
Query assignment matches 
GTDB, final tree slightly 
different from GTDB 

Nocardia farcinica NCTC 

11134 Concatenated tree 
Query assignment matches 
GTDB, final tree slightly 
different from GTDB 

Cyanobacterium 

sp002813895 (randomly 
chosen) 

Taxonomic assignment matches 
GTDB 

Genome assignments were compared against the GTDB, with high accuracy 
observed for reference genomes and isolate genomes. Low-quality MAGs 
were sometimes excluded from the final tree. Nocardia farcinica NCTC 

11134 placement was consistent across different tree-building approaches, 
with slight variations in final topology. 
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nucleotide sequences. Sequences are aligned with MAFFT to
ensure consistency [ 15 ]. 

Phylogenetic tree construction 

AutoMLST2 supports two approaches for phylogenetic tree
construction. In the concatenated approach, gene alignments
are merged into a supermatrix, which is used to construct
a phylogenetic tree with IQ-TREE [ 16 ]. Alternatively, in the
coalescent approach, individual gene trees are inferred sepa-
rately, and ASTRAL-PRO3 is employed to estimate the species
tree from these independent gene trees [ 17 ]. 

Visualization and output 
The final results, including phylogenetic trees and sequence
alignments, are accessible through interactive visualization
tools on the web interface and can be downloaded for further
analysis [ 18 ]. 

Results 

AutoMLST2 is a web server designed for automated microbial
phylogenetic analysis. Through its analysis page, users can up-
load genome files, select analysis options, and initiate process-
ing with a single click (Fig. 2 ). The platform is freely available
at https://automlst2.ziemertlab.com and remains open-source,
ensuring accessibility for researchers of all expertise levels. 

To provide a more accurate and scalable solution, Au-
toMLST2 incorporates several key enhancements over its pre-
decessor. The integration of the latest GTDB release ensures
that taxonomic classifications remain aligned with current ge-
nomic standards [ 1 ]. The platform also extends support for
archaeal genomes, with updated HMM models improving the
detection of phylogenetic signals [ 16 ]. To enhance computa-
tional efficiency, AutoMLST2 employs containerization, en-
abling simultaneous job processing, increasing throughput,
and reducing wait times. 

AutoMLST2 further improves phylogenetic accuracy, par-
ticularly for closely related genomes. Unlike GTDB-Tk, which
relies on a fixed set of 120 conserved marker proteins, Au-
toMLST2 dynamically selects multi-locus genes from a cu-
rated set of > 2800 housekeeping genes, providing higher res-
olution and more precise taxonomic classification. Addition-
ally, the standalone version offers customizable workflows, al-
lowing users to optimize analyses by selecting between fast
and accurate modes. 

Benchmarking and validation 

To evaluate AutoMLST2’s performance, we benchmarked
it against the GTDB tree using a diverse set of microbial
genomes. We tested its accuracy and scalability across dif-
ferent taxonomic levels, including closely related and dis-
tantly related genomes. Additionally, we assessed the place-
ment mode by analyzing how well the tool integrates query
genomes into existing phylogenies under various scenarios
(Table 1 ). In terms of accuracy, AutoMLST2 performs com-
parably to GTDB (Fig. 3 ), offering more precise taxonomic
classification than AutoMLST due to its incorporation of an
updated reference genome database. In De novo mode, Au-
toMLST2 is slightly slower than AutoMLST, when analyz-
ing a single genome, as it searches against a much larger
set of HMMs. However, it scales significantly better for
larger datasets, benefiting from parallel computing. Place-
ment mode is much faster but solely depends on the ANI 
estimations, therefore its accuracy can decrease with the 
quality of genomes [especially for Metagenome-Assembled 

Genomes (MAGs)]. An extra set of four example anal- 
yses demonstrating AutoMLST2’s performance across dif- 
ferent scenarios, including isolates and MAGs, is available 
at https:// automlst2.ziemertlab.com/ results/ example1 up to 

https:// automlst2.ziemertlab.com/ results/ example5 as well as 
in the supplementary data. 

Discussion 

AutoMLST2 advances automated microbial phylogenetic 
analysis by integrating modern genomic resources and ad- 
dressing limitations of its predecessor. By incorporating the 
GTDB and supporting archaeal genomes, AutoMLST2 en- 
sures taxonomic classifications remain up to date with current 
genomic standards [ 1 ]. Its dual-mode workflow—offering 
both de novo phylogenetic reconstruction and genome 
placement—enhances adaptability across diverse microbial 
studies [ 10 ,11 ]. 

A key strength of AutoMLST2 is its user-friendly web inter- 
face, which simplifies complex analyses for researchers of all 
bioinformatics backgrounds [ 8 ]. Unlike command-line tools,
it provides interactive visualizations, facilitating intuitive ex- 
ploration of phylogenetic relationships. Automated reference 
genome selection and dynamic gene filtering improve resolu- 
tion, particularly for closely related microbial strains, where 
fixed-marker approaches may be less effective [ 5 ,7 ]. 

In benchmarking, AutoMLST2 demonstrated high taxo- 
nomic precision across diverse datasets. Notably, in the case of 
N. farcinica NCTC 11134, the coalescent tree differed slightly 
from the GTDB reference tree. This variation likely reflects 
AutoMLST2’s use of a dynamic set of conserved genes, which 

can provide a higher phylogenetic signal for closely related 

genomes. 

https://automlst2.ziemertlab.com
https://automlst2.ziemertlab.com/results/example1
https://automlst2.ziemertlab.com/results/example5
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Figur e 3. P artial tanglegram of the AutoMLS T2 De no v o tree f or fiv e Streptococcus pneumoniae strain genomes, compared to part of the GTDB 

reference tree. All the genomes were correctly clustered with the S. pneumoniae representative genome. 
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AutoMLST2 efficiently processes large datasets, making it
aluable for microbiology , evolutionary biology , and natural
roduct discovery. While it performs well with high-quality
AGs, its accuracy decreases with lower-quality assemblies

ue to fragmented genomes limiting phylogenetic inference.
uture improvements could focus on optimizing gene selec-
ion for fragmented datasets and integrating network-based
nalyses of biosynthetic diversity. 

AutoMLST2 is publicly available at https://automlst2.
iemertlab.com , with comprehensive documentation for users
t all expertise levels. Its combination of accuracy , flexibility ,
ase of use, and advanced visualization tools makes it a pow-
rful resource for microbial phylogenetics. 
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